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Abstract

This report summarizes our findings in human 3D pose estimation task from im-
ages using deep convolutional neural network. We train our deep network to
regress 3D poses from 0.15 million different images of the Human36M dataset.
The regressor network is pre-trained by training a body part detection network and
then using the learned weights for initializing the pose regression network. We test
our results on approximately 13,000 images. On testing, we achieve promising re-
sults. The results are further improved by using optimizations such as weight
decay, momentum, dropout, and a non-linear activation at the last regression layer
of the regression network.

1 Introduction

The human pose estimation problem is widely known in the field of computer vision, and various
machine learning models applied to this problem provide promising results [4]. A step further,
with the use of a larger dataset, this problem can be approached by more powerful models like
deep convolutional neural networks. This report discusses the estimation of human 3D poses from
2D grayscale images in a discriminative approach, where the pose estimation task is viewed as a
regression problem. At a high level, the aim is to extract features from the 2D images and then learn
a mapping from the feature space to the 3D pose space. We use a deep convolutional neural network
as our machine learning model.

For the deep learning framework to learn the patterns of human pose from image data, we require a
large dataset for training. Human36M [9], the dataset that we have used, provides 3.6 milion video
frames with labeled poses of several human subjects performing various tasks. This huge size of
data makes it possible for deep networks to train effectively. In our present work, we restrict to
using only ‘Walking’ action, which is one of the seventeen available tasks in the dataset, for both
training and testing. The raw data from the dataset requires fair amount of pre-processing for both
the images as well as the corresponding poses. The images are available as video frames, hence
we need to perform operations like cropping, background subtraction, image compression and RGB
to grayscale conversion before actually feeding them as inputs to the deep networks. Similarly,
the 2D and 3D pose data is processed equivalently to match the modified images. Overall, we use
approximately 0.15 million images as input for training and 0.01 million images for testing our
results.

Convolutional neural networks [8] are widely used today for vision problems because of less num-
ber of parameters (as compared to a fully-connected deep neural network), which reduces overfitting
and makes training easier along with the added advantage of having translation invariance.Inspired
by [1], in our approach to train deep convolutional networks, we first pre-train the network using
human-body parts detection task and then train the main pose regression network using the learned
weights. The pre-training helps in better initialization of weights as compared to a random initial-
ization. Our final network contains three convolutional and six fully connected layers, three each for
detection and regression tasks. We wrote a CPU implementation in Theano [5], of the convolution
task and all operations inherent in training convolutional neural network, which are available along
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with all the pre-processed 128 X 128 grayscale image as well as 2D and 3D pose data at the EPFL
CV lab server.1. Theano codes are also avaliable at github. 2

2 Related Work

The problem of human pose estimation has been approached by a wide variety of machine learning
methods. [4] gives an overview on various pose estimation methods. In [6] a cascade neural network
is used having 3 stages for estimating 2D human pose from RGB images. In each stage, the network
architecture is similar to the network in [2], although it is applied to joint point prediction in 2D
images. Networks in the later stages take higher resolution input windows around the previous
predictions to refine the previous predictions.

In [7] random forests are used to estimate the body part labels from depth images and given the
predictions of the part labels, mean shift is applied to obtain the part locations. Such works have
demonstrated also that learning body part labels adds on to achieve better features for pose estima-
tion. [3] trains a multi-task deep convolutional network for 2D human pose estimation, consisting of
the pose regression and body part detection tasks. All tasks share same convolutional feature layers,
and the regression network is shown to benefit from sharing features with the detection network. A
similar approach is taken up in our work, but for 3D poses. Until now, deep convolutional networks
have mostly been used for classification tasks [2]. Given sufficient data, these deep networks can
learn decent features for regression tasks from even randomly initialized weights [1].

3 The Dataset

We use the Human36M dataset [9] for this project. Human36M is a dataset containing 3.6 million
3D human poses and corresponding images. The image data is generated by recording videos for
seventeen different actions like walking, greeting, eating, etc. performed by eleven subjects, six
male and five female, from 4 different camera angles with two sub-actions for each action. The pose
data is recorded by a MoCap (motion capture) system. In the dataset, we have RGB images, which
we convert to grayscale images. For the human body part detection network, we use the 2D pose
data provided in the dataset as the ground truth. For the pose regression network, the ground truths
are the corresponding 3D poses for each image.

We use a subsection of this dataset, namely the ‘Walking’ action. Also, we use only seven subjects
out of the eleven available subjects in the dataset, as the ground truth for the other four are held
by the Human36M dataset creators for testing-only. We train the network using the data from six
subjects and test our results on the seventh subject. The number of images belonging to each subject
for ‘Walking’ as well as some other actions are shown in figure 1(a). As shown in the figure, we use
subjects S1, S5, S6, S7, S8 and S9 for training the network which amounts to approximately 0.15
million images and we test our network on S11 which has 13,032 images. We plan to incorporate
the other five actions shown in the figure, for which we have already pre-processed the data, in our
future work.

The RGB images are frames of the recorded videos from which we crop the human bounding-box
and convert to a grayscale image. Also, we us the background subtraction mask data per image
provided in the dataset to get rid of the background part of the image. This leaves us with images
of varying dimensions, which are then normalized to a fixed size of 128 X 128. We maintain the
aspect ratio of each image by padding zero-value pixels along the shorter dimension and ensure that
the subject is placed at the center of the image. An image before and after the pre-processing step is
shown in figure 1(b) and 1(c) respectively. For the 2D and 3D poses, the dataset originally provides
pose data for 32 body joints, out of which we use only 17 main joints, leaving aside unimportant
joints like fingers, toes, etc. We use the following 17 joint ids out of the 32 available :

J(17) = [1 2 3 4 7 8 9 13 14 15 16 18 19 20 26 27 28] (1)

And, instead of using absolute joint positions provided in the pose data, we use joint positions
relative to the root location, by subtracting from each joint position, the position of the pelvis joint

1/cvlabdata1/home/btekin/tracking/spatiotemporal pose estimation/pose code/Human36m/semester project/MAINFINAL
2https://github.com/arj7192/HumanPose3D
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(a) Number of images for each of the seven subjects from Human36M

(b) Original sample image
of size 478 X 197 X 3 of
subject S1 from ’Walking’
action

(c) Pre-processed 128 X 128 grayscale image

(d) 3D pose sample visualization (e) 3D pose marked with the 17 joints

Figure 1: Human36M dataset
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(joint id = 1). The 3D pose ground truth for the regression network is a vector of size 51 X 1,
for each 128 X 128 grayscale image as an input to the network. A sample 3D pose visualization
corresponding to an image is shown in figure 1(d). Figure 1(e) shows the same 3D pose image
marked with the 17 consequential joint ids that we use in our network. Note in the figure that the
peripheral joints like fingers and toes are not marked among the 17 joints.

4 Deep network for pose estimation

Inspired by [1], the deep framework consists of two sub-networks : a joint point detection network
and a pose regression network. The inputs for both these networks are the bounding box images
containing human subjects. The regression network learns the 3D joint positions, whereas the detec-
tion network uses a sliding window approach for each of the joints and performs classification task
of whether a body joint is contained in a sliding window or not. Initially we began with working
only with the pose regression network by random initialization. Upon not achieving good results,
and for getting a reasonable initialization of network weights, we started pre-training the regression
network with the help of the detection network, which finally gave us promising results.

4.1 Pose Regression

If Ji = (Ji,x, Ji,y , Ji,z) is the position of the ith joint provided in the 3D pose data and if P(i) refers
to the pelvis joint, then we use the following relative joint positions, Ri = Ji - JP (i). We use relative
joint positions because the absolute positions convey less meaning by themselves and would be
harder to train with. The regressor network is trained by minimizing the squared difference between
the prediction and the ground truth position,

Er(Ri, R̂i) = ‖Ri − R̂i‖22 (2)

whereRi and R̂i are the ground truth and predicted positions respectively for ith joint. In the present
state, we have used an identity activation function for the last regression layer of the pose regression
network. For adding to the complexity of the network, we plan further to use also a non-linear
activation for the last regression layer as done in [1]. For the rest of the hidden fully-connected
layers, we use the tanh activation.

With a kernel configuration of [32 64 64] derived from [1] and a learning rate of 0.001, this network
takes 2 to 3 days to train for 1 epoch on the CV lab CPU server [12]. As an alternative, we also
use a smaller kernel configuration of [5 10 15] to speed up the learning process. With the addi-
tional optimizations like momentum and weight decay, it requires more than 30 to 40 epochs for the
regression network to reach an optimum, whereas with the normal gradient descent procedure, the
network seems to saturate within 4 to 5 epochs.

4.2 Joint point detection

For each image i, and for each joint j, we generate a 10 X 10 2D grid where we have 13 X 13
size windows across the grid. This grid is overlaid on the 128 X 128 image space, where we have
approximately 100 such windows. We transform the 2D pose data corresponding to image i, with
the same re-sizing parameters used for transforming image i from its original size to a 128 X 128
image. For the 100 windows generated, we have

hj,w =

{
1, if Jj is inside window w,
0, otherwise

(3)

where Jj is the transformed 2D position for joint j, and hj,w is an indicator variable. The goal of this
network is to predict this indicator variable for each of the 17 joints for each of the image provided
in the dataset. This network has, therefore a 1700 X 1 size binary vector as the ground truth. And the
network is trained by minimizing cross entropy between the ground truth label hj,w and predicted
label ĥj,w,

Ed(hj,w, ĥj,w) = −hj,wlog(ĥj,w)− (1− hj,w)log(1− ĥj,w) (4)

Visualization of the sliding window approach for detection is shown for a few joints in fig 2. The
procedure shown in the figures 2(b), 2(c), 2(d) and 2(e) for the four joints is performed for all 17
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(a) A 10 X 10 grid overlaid on the 128 X 128 2D
pose space

(b) Sliding window detection for the pelvis joint
(joint id = 1)

(c) Sliding window detection for the head (joint id
= 11)

(d) Sliding window detection for the left knee joint
(joint id = 3)

(e) Sliding window detection for the right elbow
joint (joint id = 13)

(f) Sliding window detection combined for all the
17 joints

Figure 2: Joint point detection task schematic
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joints for each training sample. Notice that we have more than one window detected for a particular
joint. This is because for each joint point, we consider not only its position but also the edges
connecting this joint point to its immediate neighbours. If more than 30% of the edge lies in a
window, that window is also considered as detected. This particular algorithm is inspired from [3].

For this network, we use the tanh activation for all the hidden fully connected layers including the
last classification layer. This network takes approximately the same amount of time per epoch as the
regression network for the same set of hyper-parameters. We train this network just once for upto
50 epochs with a convergence criterion. Thereafter, we load the saved weights of this network for
training the regression network each time instead of a random initialization.

4.3 Full network

The network has 9 layers : 3 convolutional layers shared by both the sub-networks, 3 fully connected
layers for regression, and 3 fully connected layers for detection network.

We first train exclusively on the detection network using the following cost function :

φM =
1

2

T∑
t=1

N∑
i=1

L∑
l=1

Ed(h
(t)
i,l , ĥ

(t)
i,l ) (5)

and then train the regression network using the learned weights of the first three convolutional layers
from the detection network, using the following cost function :

φM =
1

2

T∑
t=1

N∑
i=1

Er(R
(t)
i , R̂

(t)
i ) (6)

where t is the index of training sample, N is number of joints and T is number of training samples.
A schematic of the network architecture derived from [1] is shown in figure 3. In the figure, N
represents the number of joints and N=17 in our case. For the first and second convolutional layers
conv1 and conv2, we use filters of size 5 X 5 and for the layer conv3, we use filters of size 6 X 6.
For both of the sub-networks, we use back-propagation to update the weights during training.

The first convolutional layer conv1 filters the 128 X 128 input image with 32 kernels of size 5 X 5.
The second convolutional layer conv2 takes as input the max-pooled (with a pooling size of 2 X 2)
output of conv1 and filters it with 64 kernels of size 5 X 5. Similarly, the third convolutional layer
conv3 has 64 kernels of size 6 X 6 to filter the pooled output of conv2. The choice of this particular
architecture is primarily inspired by [1]. Effectively, in the first phase of the learning process, the
link between layers pool3 and fcr1 is effectively cut-off and only the detection network is running.
And in the second phase, we cut-off the connection between layers pool3 and fcd1 and and connect
pool3 to fcr1 to run the regression network.

4.4 Learning details

In the first session of our experiments, we trained only the regression network with batch size of 1
image and learning rate of 0.001. After getting unconvincing results even after changing the batch
size to 128 images, we switched to using the detection network as well for pre-training as suggested
in [1]. Furthermore, we incorporated more optimizations to get good results and in the present state
of our work, we train our model using stochastic gradient descent with a batch size of 128 examples,
learning rate of 0.001, momentum of 0.9 and weight decay of 0.0005. These parameter values are
mainly inspired by [2]. The update rule for weight w is

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε · 〈
∂L

∂w
|wi〉DI

(7)

wi+1 := wi + vi+1 (8)

where i is the iteration index, v is the momentum parameter, ε is the learning rate, and 〈 ∂L∂w |wi〉DI

is the average over the i th batch Di of the derivative of the cost function with respect to w , evaluated
at wi
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Figure 3: Deep Convolutional Neural Network Architecture

(a) Network Parameters

(b) Number of nodes (c) Filters and (max)pool size

Figure 4: Details of learning
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For the detection network, we initialize the network with random weights, and for the regression net-
work, we use learned weights from the detection network for initialization. We maintain a constant
learning rate throughout the learning procedure. We trained the detection network for 50 epochs and
we trained the regression network for 100 epochs, with the dataset of 0.15 million images and kernel
size of [5 10 15], which takes approximately five to six days on the CV lab CPU server [12]. We do
not use yet any specialized over-fitting removal techniques such as dropouts or rectified linear units.
The network parameters that we used finally are summarized in figure 4.

5 Results

For the detection network which we use to pre-train the regression network, we obtain a very low
train error of around 0.05 (cross-entropy error) by the end of 50 epochs. The learning curve for
the detection network is shown in figure 5(a). For the regression network, we evaluate the pose
predictions using the mean per joint position error (MPJPE).

MPJPE =
1

T

1

N

T∑
t=1

N∑
i=1

‖(J (t)
i − J

(t)
root)− (Ĵ

(t)
i − Ĵ

(t)
root)‖2. (9)

We finally used [5 10 15] as our kernel configuration to be able to train the regression network for
100 epochs. For our dataset that involves only the ‘Walking’ action, we obtain the best test error of
80.42 and corresponding train and validation errors of approximately 36.23 and 40.7 respectively in
terms of MPJPE. The learning curve for the regression network for 100 epochs is shown in figure
5(b). From the learning curve, we observe that right after epoch 7, the train and validation errors,
along with the test error, start declining until epoch 100. We used weight decay, due to which the
network goes on learning progressively for greater number of epochs. We observe that the test error
almost saturates by epoch 100.

Qualitatively, we visualize the predicted 3D poses for certain test samples and compare it with the
ground truth. We use the visualization code provided along with the Human36M dataset 3. We find
that the network is able to predict a good approximation for the ground truth 3D pose although the
predictions are not as smoothly changing with increasing number of frames as the ground truth. A
few predicted 3D poses are shown along with the corresponding ground truth in figure 6.

On visualization of our results, we observe a piece-wise constancy in the prediction of 3D poses
compared to the smoothly varying ground truth. We found that the network predicts almost a con-
stant pose for k consecutive neighboring ground truth poses (k=12 mostly in our case), i.e. the
prediction pose changes after every k frames of ground truth 3D pose. The network seems to be
trying to approximate a single pose prediction for consecutively multiple ground truth 3D poses.
The video with visualization results comparing the ground truth pose and the predicted pose are
available for validation 4 and test data 5.

6 Conclusion

In this project, we use a deep convolutional neural network for estimating 3D human pose from
grayscale images. We use the Human36M dataset for training the network. The pre-processing
step of the images involve RGB to grayscale conversion, cropping of the human bounding box,
compression, padding with the subject at the center. We also pre-process the 2D and 3D pose data
accordingly. We pre-train the regression task with the detection task, which helps in regularization.
The detection network is run once for 50 epochs and then the learned weights for layers conv1,
conv2 and conv3 are used for initialization in the regression network.

We use stochastic gradient descent for training the regression network along with optimizations like
momentum and weight decay. With a kernel configuration of [5 10 15] for the three convolutional
layers, upon training for 100 epochs, the regression network reaches its optimum, and the train and
test errors saturate at around 36 and 80 (MJPPE) respectively. We use MPJPE as the error metric

3http://vision.imar.ro/human3.6m/code-v1.1.zip
4https://drive.switch.ch/public.php?service=files&t=d14ace048e9613e3916856e03d8fe4ac
5https://drive.switch.ch/public.php?service=files&t=a5a28fb4cea80f480ae991922a837f7b
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(a) Joint point detection network (b) 3D pose regression network

Figure 5: Learning curves for detection and regression networks

(a) Test result 1 : prediction(left) and ground
truth (right)

(b) Test result 2 : prediction(left) and ground
truth (right)

(c) Test result 3 : prediction(left) and ground
truth (right)

(d) Test result 4 : prediction(left) and ground
truth (right)

Figure 6: Sample test results for 3D pose regression
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for evaluation and obtain the best test error of 80.43. Upon visualization of the predicted 3D poses
compared to the ground truth, we notice that we obtain a promising prediction 3D pose for all the
test samples. However, the predictions are changing at a lower frequency compared to the ground
truth 3D pose samples. Future work will be on alleviating this piecewise constancy and predicting
smoothly varying poses for each of the test samples. We also plan to include five more actions other
than ‘Walking’ to augment our data and to have a better generalization.
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